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INTRODUCTION
In recent decades, our appreciation of
the complexity of the brain has deep-
ened immensely, as has our understand-
ing of how it performs key functions. In
the face of such complexity, and given
the rising cost of neuropsychiatric illness
(1), an intriguing question is whether we
can promote further understanding, and
in some cases enhancement, of the typi-
cal and atypical brain by targeted modu-
lation of its activity. Notably, transcranial
alternating current stimulation (tACS) –
which involves transcranial application of
weak sinusoidal electrical currents (2) –
seems ideally suited to address this ques-
tion, as it has been demonstrated to modu-
late endogenous oscillatory electrical activ-
ity (3), enhance cognitive functions (4–7),
and provide support in neurological dis-
ease (8, 9). However, a complete mecha-
nistic pathway between the neuronal and
cognitive effects of tACS remains in need
of explication, precluding both significant
theoretical contribution by tACS studies,
and the development of more adaptive
neuroenhancement regimes. Therefore, in
this Opinion article, we briefly review the
role of oscillatory neuronal activity in cog-
nition, before outlining one potential path-
way by which the interaction between tACS
and endogenous oscillations at a network
level may be reconciled with its effects on
broader cognitive functions.

THE ROLES OF CORTICAL
OSCILLATIONS IN COGNITION
Synchronous oscillations in the firing rates
of large populations of neurons – recorded

as fluctuations in electrical field poten-
tials – represent a highly organized form
of brain activity (see Figure 1). Spe-
cific oscillatory frequencies emerge in a
task-, area-, and state-dependent man-
ner, and are thought to reflect struc-
tural and functional features of the
active neuronal networks mediating local
and long-range cortical functions, and
their cognitive manifestations [see in Ref.
(10)]. For example, alpha oscillations (8–
12 Hz) over occipito-parietal cortices have
been suggested to facilitate the inhibition
of task-irrelevant visual processing (11),
while increased oscillatory synchronization
between frontal and parietal cortices in
multiple frequency bands is thought crit-
ical to the orientation of attention (12)
and the maintenance of working mem-
ory (13). Importantly, reliable alterations
in oscillatory activity also feature in the
pathophysiology of several neurological
and psychiatric conditions (14–17).

THE INTERACTION BETWEEN tACS
AND ENDOGENOUS OSCILLATIONS
Although the currents applied in tACS
reliably generate fluctuations in individ-
ual neuronal firing rates (18), their inter-
action with larger ensembles in humans
remains less clear. Nevertheless, two mech-
anistic insights have been derived from
animal, computational, and human behav-
ioral studies [see in Ref. (18, 19)]: (1)
that in certain situations tACS may lock
endogenous oscillatory activity to its fre-
quency and phase (“entrainment”; see
Figure 1); and, (2) that it may amplify
a network’s activity by stimulation at its

“natural” frequency (“resonance”). How-
ever, the extent to which the behavioral and
electrophysiological effects of tACS depend
on these interactions remains unclear. As
clarifying this issue is critical for full mech-
anistic understanding of tACS, and due to
the recent publication of several studies
that inform this debate, we review these
theories below, before attempting to iden-
tify sufficient commonality between them
to allow a more mechanistic consideration
of the effects of tACS on cognition.

Entrainment refers to the synchroniza-
tion of the frequency and phase of neu-
ronal activity to external stimuli, such
as rhythmic visual stimulation (20), or
activity in other brain modules. In sup-
port of the theory that tACS entrains
endogenous activity, weak alternating cur-
rents have been shown to shift the fre-
quency and phase of neuronal firing in vivo,
in vitro, and in computational models (18,
21–25). According to these computational
accounts, entrainment increases the num-
ber of individual neurons firing at the peak
of a particular oscillation – and therefore
its power – in a manner that could con-
ceivably affect behavior (18, 23). This the-
ory has been corroborated by two recent
human studies, the first of which reported
increases in endogenous parieto-occipital
alpha power during alpha-tACS to the
same regions, noting that specific phases
of tACS correlated with improved accuracy
on a visual oddball task (3). The second
reported that induction of lucid dream-
ing occurred with increases in endoge-
nous fronto-temporal activity at 25 and
40 Hz during 25 and 40 Hz stimulation,
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Battleday et al. Mapping the mechanisms of tACS

FIGURE 1 | Oscillations in electrophysiological recordings and the
effects of tACS on network activity. (A) Electrophysiological recordings
can reveal important information about the brain, in both resting and
task-oriented states. Left: the electroencephalogram, which displays
electrical signals from a series of electrodes placed on the scalp. Right:
when electrophysiological recordings are filtered oscillatory patterns
emerge in a task-, area-, and state-dependent manner, typically divided

into delta (0.5–4 Hz), theta (4–7 Hz), alpha (7–12 Hz), beta (12–30 Hz), and
gamma (30–100+ Hz) frequency bands. (B) The interaction between tACS
and neural firing (shown through both local field potential fluctuations and
changes in neural firing patterns). In animals, theoretical, and human
work, tACS has been found to increase the power of oscillations and
cause them to synchronize their fluctuations with incoming stimulation
(see text).

respectively (26). Indirect illustrations of
the benefits of artificially entraining two
endogenous oscillating systems have also
been provided: Polania and colleagues
reported decreased reaction times on a
working memory task during 6 Hz tACS to

left prefrontal and parietal cortices with 0°
phase alignment (“phasic”), and increased
reaction times during tACS with 180°
phase alignment (“anti-phasic”) (4). Simi-
larly, Strüber and colleagues reported that
anti-phasic 40 Hz tACS delivered to both

parieto-occipital cortices caused percep-
tual alteration, whereas phasic tACS did
not (27).

Two things are striking about the
majority of tACS studies, including those
mentioned above: (1) behavioral and
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electrophysiological amplification is typi-
cally only elicited at a single stimulation
frequency; and, (2) this tends to be the
frequency that dominates electrophysio-
logical recordings of unstimulated sub-
jects completing similar tasks, during sim-
ilar behavioral states. For example, Feurra
and colleagues showed that beta tACS of
the motor cortex – which oscillates at
beta frequencies during rest – but not
stimulation at other frequencies, or to
other areas, directly influenced motor cor-
tex electrophysiology (28). Further, groups
have shown that in the somatosensory (29)
and visual (30) systems, tACS only elic-
its behavioral effects at frequencies similar
to those recorded from the cortex during
analogous sensory stimulation. Although
it was initially argued that effects reported
in the visual paradigm – namely, that
phosphene perception was induced by
alpha-tACS to the visual cortex in the dark,
and beta (12–30 Hz) in the light, the dom-
inant oscillations recorded in this area in
dark and light environments, respectively –
could instead result from retinal activa-
tion (31–33), Kanai and colleagues subse-
quently showed that beta tACS of occipital
but not frontal cortex directly interacts with
underlying neuronal activity (34), casting
doubt on the contribution of any volume
conduction effect. Thus, it would seem
that – rather than shifting the frequency
and phase of endogenous oscillations – the
causal interaction between tACS and neu-
ronal networks depends on matching stim-
ulation frequency with endogenous activ-
ity. According to the phenomenon of res-
onance, if task-activated oscillatory brain
networks were stimulated at their resting
frequency this could lead to augmentation
of their activity (35). In support of this
theory, Rosanova and colleagues showed
that cortico-thalamic modules resonate
at distinct frequencies if perturbed using
transcranial magnetic stimulation (namely,
alpha-band in occipital cortex, beta-band
in parietal, and fast-beta-/gamma-band in
frontal) (36). Further, Schmidt and col-
leagues showed that applying low intensity
alternating electrical fields to an optoge-
netically induced “endogenous” 1 Hz firing
rhythm in mouse neocortical slices pref-
erentially increased oscillatory activity at
1 Hz and its first harmonic (2 Hz), collabo-
rating model-predicted tACS-induced res-
onance phenomena (22, 37). Interestingly,

stimulation using higher currents abol-
ished this selectivity, implying that the abil-
ity of stimulation to drive network activity
may be less constrained by the natural fre-
quency of an area at higher intensities (38).

Although the entrainment and reso-
nance accounts appear discrete, a common
theme can be identified between them: the
most important network effect of tACS
is the wider recruitment of a – presum-
ably previously partially enlisted – popula-
tion of neurons into task-relevant rhythmi-
cally firing networks, occurring as a corol-
lary of tightened synchrony or resonance
properties. In this context, phase align-
ment between stimulation and endoge-
nous oscillations is still important, as stip-
ulated by theoretical accounts of entrain-
ment (23) and resonance (39), and demon-
strated by the human behavioral stud-
ies discussed above (3, 4, 26, 27). Thus,
we propose that – at the low intensities
applied using tACS – matching stimulation
and endogenous frequencies are a neces-
sary condition to enable the causal ampli-
fication of task-specific network activity,
likely through an interaction that involves
entrainment and resonance. This matching
may proceed gradually, via entrainment,
or may be imparted based on concurrent
electrophysiology.

MOVING FROM NETWORK EFFECTS TO
COGNITIVE FUNCTIONS
Further investigation of the network effects
of tACS is clearly required; however, the
question of how recruitment of a larger
population of neurons oscillating at a par-
ticular frequency might affect a nebu-
lous function like cognition may still be
approached. To do so succinctly, the fol-
lowing premises must first be accepted: that
particular cognitive functions are achieved
by the activity of distributed brain net-
works; that particular cortical regions per-
form sub-computations of these functions;
and that oscillations within brain tissue
selectively enhance transfer of information
through this network [see in Ref. (10, 40)].

Since tACS targets a relatively localized
cortical region, causing more widespread
enlistment into a task- and state-activated
rhythm should have direct consequences
on information processing by that area.
Neurons are more likely to fire in response
to each other if they are synchronized,
as input is more likely to be transmitted

at periods of mutual depolarization (41).
Thus, it is possible that tACS-induced
increases in local coherent activity enhance
information transfer and processing within
the subset of oscillating networks that sub-
serve task functions, thereby altering their
contribution to cognitive processes. For
example, given the hypothesized role of
alpha rhythms in irrelevant visual input
suppression (11), increasing the power of
alpha oscillations could enhance the sup-
pression of task-irrelevant visual inputs,
and improve overall performance on visual
attention tasks. This could conceivably
have occurred in Helfrich and colleagues’
study, where alpha-tACS increased alpha
power over parieto-occipital cortices and
improved performance in a visual task (3).
Equally, if the inhibitory–excitatory bal-
ance or physical orientation of enlisted
neurons were to differ markedly from the
already active neuronal population, they
could alter computations performed by
that network; indeed, the sensitivity of neu-
rons to applied electrical fields appears
dependent on whether they are inhibitory
or excitatory (42), and their orientation
and geometry (43,44). In this context,Brig-
nani and colleagues’ report of deteriora-
tion of visual performance following alpha
or theta tACS to visual cortex regardless
which hemisphere was stimulated warrants
further investigation, as it questions the
degree to which the effects of tACS can be
considered local or frequency-specific (45).

As it is now thought that distrib-
uted cortico-thalamic networks mediate
the computations underlying broad cog-
nitive functions (46), it follows that tACS
could also engender cognitive enhance-
ment through modification of an area’s
function within such a network. Such an
interaction could explain the reduction in
the time taken to solve Raven’s Matrices – a
test of fluid intelligence, a function pur-
portedly mediated by a multi-region net-
work (47) – following gamma tACS of
the left frontal lobe (in this case 40 Hz)
(6). According to Fries’s communication-
through-coherence hypothesis, informa-
tion is passed more efficiently between net-
work components if they are “coupled”
to each other through synchronous depo-
larizations. Coupling could be established
by increased synchronization of a region’s
output onto a recipient area, which would
increase the impact of its output due to
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the time dependence of post-synaptic sum-
mation, and if sufficient lead to entrain-
ment (40). It follows that by increasing
synchrony in one area, tACS could affect
its coupling with other network compo-
nents, and thereby alter the cognitive func-
tion that emerges from the activity of
that network. Notably, this theory pre-
dicts the results of Polanía and colleagues’
study, in which two areas were artificially
coupled at phasic and anti-phasic align-
ments (4). Finally, amplification of oscil-
latory power could alter synaptic weight-
ing within the components of a network,
potentially in turn augmenting and sus-
taining direct amplification of oscillatory
activity (48).

DISCUSSION
In summary, by virtue of entrainment and
resonance, tACS may modulate cognitive
functions by enlisting a wider population
of neurons into a local oscillating network,
and in turn alter both the internal compu-
tations performed by an area and activity
within a wider cerebral network. A critical
question remains whether tACS can only
be used to modulate one network per area
per task. If this is the case, future improve-
ments of tACS will depend on cataloging
the spatio-temporal evolution of oscilla-
tory patterns during task completion, as
well as improving technology for apply-
ing tACS in single and multiple areas (49).
If, instead, a number of networks may be
selectively enlisted by stimulation at their
distinct frequencies, the potential for prob-
ing and enhancing cerebral network func-
tion is vast. In either case, striving for a full
mechanistic account of tACS remains vital
in enabling tACS to be applied with maxi-
mal efficacy, in healthy and ill populations
alike.
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